
Quick Birkhoff-von Neumann Decomposition
Algorithm for Agile All-Photonic Network Cores

Cheng Peng, Gregor v. Bochmann and Trevor J. Hall
Centre for Research in Photonics, School of Information Technology and Engineering

University of Ottawa
Ottawa, Ontario, Canada

{cpeng, bochmann, thall}@site.uottawa.ca

Abstract—This paper presents a simple and efficient algorithm
for timeslot allocation in agile all-photonic network (AAPN) cores
working under a time division multiplexing (TDM) mode, called
the Quick Birkhoff-von Neumann Decomposition Algorithm
(QBvN). The time complexity of QBvN can reach ()O Nη for a
N N× switch with a TDM frame size of η . Another version of

QBvN, called QBvN-cover, is also proposed to provide
guaranteed scheduling with configuration overhead. For QBvN-
cover, the bound of the number of generated switch
configurations is provided and hence the necessary speedup for
AAPN cores. Under stream-type, continuous bit rate traffic,
QBvN-cover shows superior delay performance compared with
other heuristics in the literature. Although QBvN-cover is unlike
other BvN algorithms that use a service matrix as input, we show
that service matrix construction from traffic demand is necessary
for QBvN-cover to perform well.

Keywords- Switching Systems, Optical Networks, Scheduling
Algorithms, Time Division Multiplexing

I. INTRODUCTION
The term “agility” in optical networks describes the ability

to deploy bandwidth on demand at a fine granularity that
allows carriers to provision and deploy services rapidly, which
radically increases network efficiency and brings to the users
much higher performance at reduced cost. One possible scheme
to provide such agility in WDM networks is multiplexing in the
time domain, which is based on the principle of Time Division
Multiplexing (TDM) [1]. In this context, optical switches along
lightpaths must be scheduled to reconfigure every one to a few
timeslots for bandwidth sharing. Centrally controlled Agile All-
Photonic Networks (AAPN) [1] can provide such agility. In
contrast to current backbone networks, all-photonic networks
have the property that both transmission and switching are
performed in the optical domain. The absence of optical-
electrical-optical (OEO) conversion leads to two important
advantages: greatly increased capacity and transparency to data
formats and bit rates.

A. AAPN Networks
The AAPN has adopted an overlaid star topology, shown in

Figure 1, which consists of a number of hybrid photonic /
electronic edge nodes connected together via a wavelength

stack of buffer-less transparent photonic switches placed at the
core nodes (a set of space switches, one for each wavelength).
Each edge node contains a separate buffer for the traffic
destined to each of the other edge nodes. These buffers are
called Virtual Output Queues (VOQs) [2] and are used to
eliminate the Head-Of-Line blocking associated with First-In-
First-Out (FIFO) queuing [3]. Traffic aggregation is performed
in these VOQs, where packets are collected together in fixed-
size slots that are then transmitted as single units across the
network via optical links. At the destination edge node, the
slots are partitioned, with reassembly as necessary, into the
original packets.

The control of the AAPN is performed in the electronic
domain. Each core switch has an associated electronic
controller that performs timeslot allocation, switch
configuration and other control functions. The control
messages are exchanged between edge nodes and core nodes in
the form of control slots out-of-band over a dedicated channel
(on a particular wavelength) on each fiber. Each edge-node
signals traffic demand information to the optical core along
control channels every frame. The optical core uses this
information to compute a schedule of timeslot allocations for
all edge-nodes and signals back to inform each edge-node of
the timeslots for each destination that it may use to transmit its
traffic.

The AAPN technical criteria are defined as follows. The
dimension of the photonic switches is no more than 64 64× .

This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada and industrial and government
partners, through the Agile All-Photonic Networks (AAPN) Research
Network.

Figure 1 AAPN Overlaid Star Topology

The timeslot duration is specified as 10 microseconds with a
configuration overhead of less than 1 microsecond. The link
capacity is 10Gbps.

B. Different Timeslot Allocation Schemes in the Literature
The precise timeslot allocation scheme to be adopted in the

agile all-photonic core is an important issue. The timeslot
allocation scheme under the AAPN context should possess the
property that the time complexity should be low enough to
permit a practical implementation in the context of high-speed
optical switching.

In the literature, many timeslot allocation schemes have
been proposed such as Parallel Iterative Matching (PIM) [4],
Iterative Round-Robin Matching (iRRM) [5], Iterative Round-
Robin with SLIP (iSLIP) [5], Dual Round-Robin Matching
(DRRM) [6], and Karp’s randomized algorithm [7]. These
algorithms were developed in the context of input-queued
switches which consist of a switching fabric equipped with
VOQs at its input ports. If the traffic is non-uniform and the
occupation of some queues starts to increase, these algorithms
cannot contribute more to the service of these queues and
further cause the input queues to become unstable without
internal switch speedup.

Non-uniform traffic is prevalent in current networks. In
order to handle such traffic, the Birkhoff-von Neumann (BvN)
decomposition approach to input-queued switch scheduling has
been introduced by Chang et al [8]. Chang’s algorithm needs
an offline part to compute the switch configurations with time
complexity of O(N4.5) where N denotes the number of ports of
the switch. Towles et al. [9] also introduced a BvN
decomposition approach to input-queued switch scheduling. In
[9], Towles introduced three different offline approaches,
EXACT, MIN and DOUBLE. The latter two are heuristics. The
time complexity of these three approaches is O(N4.5), O(N3.5)
and O(N2logN) respectively. Paredes [10] uses an edge-
coloring scheme to perform the BvN decomposition with time
complexity O(N log)η η where η denotes the frame size. The
particular implementation described by Paredes is restricted to
η a power of two; however an algorithm with the same time
complexity order due to Cole et al. [11] may be used for η not
a power of two. Cole’s algorithm is sophisticated and, although
it achieves a time complexity that scales as (log)O Nη η , it has
a large overhead. Keslassy et al [12] proposed a simple
heuristic approach, called Greedy Low Jitter Decomposition
(GLJD), to reduce overhead. However, GLJD can only find
partial permutation matrices. In the worst case, the time
complexity is O(N3) (which is implied by theorem 5 and figure
1 of [12]).

A simple and efficient resource allocation approach that can
work well even under non-uniform traffic is needed to schedule
high-speed agile all-photonic cores. In this paper, a simple and
efficient BvN-based decomposition algorithm is proposed. To
the best of our knowledge, the proposed algorithm has the
lowest time complexity compared with other known BvN
decomposition heuristics in the literature.

The paper is organized as follows. Section ΙΙ lays the
theoretical foundation of BvN decomposition. Section ΙΙΙ

introduces the quick BvN decomposition algorithm and
analyzes its performance. Section ΙV presents and discusses
the results of simulations and Section V draws conclusions.

II. THEORETICAL FOUNDATION

A N N× traffic matrix ()ijM m= represents the traffic
demand between ingress and egress ports of a N N× switch.
The traffic matrix is η -admissible if all its entries are non-
negative and its row and column sums are no greater than η .

An η -server service matrix ()ijS s= is defined as a matrix
with integer entries such that:

0ijs ≥ and , ,ij ij
i j

s s Zη η η += = ∈∑ ∑ .

The η -server service matrix represents the maximal traffic
demands that an optical core can serve in a frame size of η . An
η -service matrix can always be found that can serve an η -
admissible traffic matrix.

A permutation matrix is a matrix with (0,1)-entries whose
row sums and column sums are one. Similarly, a partial
permutation matrix is defined as a matrix with (0,1) entries
whose row sums and column sums are at most one.
Permutation matrices represent the configuration of optical
switches, i.e., the connectivity pattern between ingress and
egress ports without contention for one timeslot.

Birkhoff-von Neumann decomposition, the foundation of
the algorithm proposed in this paper relies on the Birkhoff-von
Neumann Theorem [13] that is stated in a form restricted to
integer arithmetic in Theorem 1.

Theorem 1 [7]: Any η -server service matrix ()ijS S= can be
written as a convex combination of permutation matrices 'P .

'

1

K

k k
k

S Pα
=

= ∑ , with
1

, ,
K

k k
k

K Zα η α +

=
= ∈∑ (1)

Theorem 1 implies that all η -server service matrices can be
provided by a photonic core configuration schedule with a
frame size of η .

III. QUICK BIRKHOFF-VON NEUMANN DECOMPOSITION
ALGORITHM

In this section, a simple and efficient BvN-decomposition
based heuristic, called Quick BvN decomposition algorithm
(QBvN), is discussed. The motivation of QBvN is that, given a
η -server service matrix, finding partial permutation matrices
instead of permutation matrices, the combination of which is
close to the η -server service matrix, may be accepted for high-
speed agile all-optical cores provided that a low time
complexity can be achieved.

A. The Basic Idea of QBvN Algorithm
QBvN algorithm treats a N N× η -server service matrix S

as a bipartite graph G=(Vi, Vj, E), a mathematical structure
consisting of two disjoint vertex sets, Vi and Vj, identified here
with ingress and egress switch ports respectively, and one edge
set E, where each edge joins one vertex from each vertex set. A
bipartite graph G can be derived from a service matrix by
applying (2).

ij k edges on G between vertex i and j, if s 0
, ,

no edges on G between vertex i and j,

k
i j

otherwise

= >∀

(2)

A bipartite graph matching GM is a sub-graph of G such
that no more than one edge is incident on any vertex. A
bipartite graph matching GM is said perfect if there is an edge
incident to every vertex. Similarly, a bipartite graph matching
GM can be derived from a partial permutation matrix P by
applying (3).

M ij

M

one edge on G between vertex i and j, if p 1
, ,

no edges on G between vertex i and j,
i j

otherwise

=∀

 (3)

The general idea of QBvN is to decompose a given bipartite
graph G into bipartite graph matchings { GM } in the following
way: For a N N× agile photonic core, the algorithm visits all
N ingress ports on G one-by-one to generate a GM. For each
ingress port i, i=0, 1, .., N-1, the following two steps, matching
and selection, are applied.

i. Matching obtains all augmenting edges incident on port i.
An edge <i, j> on G is said to be an augmenting edge if
both port i and j on GM are not yet part of the matching.

ii. Selection chooses one of the augmenting edges with the
smallest egress port number and moves it to GM from G.

After all N ingress ports are visited, no augmenting edges
can be added into GM and thus GM is a maximal bipartite graph
matching. Therefore its associated partial permutation is
constructed. This procedure is repeated η times to find the first
η partial permutations. Note that QBvN changes the visiting
sequence of the ingress ports in a round-robin fashion before
generating the next GM.

Another version of QBvN, called QBvN-cover, which
offers guaranteed scheduling is proposed. The difference
between the QBvN-cover and QBvN lies in the termination
condition. QBvN terminates when η partial permutation
matrices are generated. The QBvN-cover stops when the
service matrix S can be covered by F partial permutation
matrices () () ()1 , 2 ,...P P P F , F η≥ :

()
1

0 , ,
F

ij ij
k

i j N P k S
=

∀ ≤ < ≥∑ .

Note that the QBvN-cover may generate more than η
permutation matrices in order to provide guaranteed
scheduling. Consequently, an internal speed-up for switches
running under the QBvN-cover is required.

B. Performance
Theorem 2 provides the bounds on the number of partial

permutations found by QBvN-cover.

Theorem 2: Let F be the number of partial permutation
matrices decomposed from a η -server service matrix by the
QBvN-cover algorithm. Then

1.5Fη η≤ ≤

Proof: The lower bound derives directly from Theorem 1. The
upper bound is given according to the following argument.

Let () () ()1 , 2 ... Nσ σ σ be a permutation of the ingress
ports that describes the order they are visited in the procedure
of generating a partial permutation matrix. Note that QBvN-
cover visits all N ingress ports to obtain a partial permutation
matrix and hence N rounds of selection-matching procedures
are called. At the kth matching-selection round, the ingress port

()kσ is visited and the selected egress port is denoted by

()kδ .

According to QBvN-cover’s matching-selection procedure,
it is possible that an ingress port ()kσ is blocked by a set of

ingress ports, (){ },i i kk σΓ = < . By blocking it is meant that

the ingress ports in kΓ select all egress ports that ()kσ can
select for matching. As a result, if a blocking happens, ()kσ
cannot find any egress ports for matching at the kth matching-
selection round.

For an ideal BvN decomposition algorithm, 0kΓ = for
any k N≤ . It implies that there does not exist any blocking,
which is true in terms of Theorem 1.

Now we use reduction to absurdity to prove that kΓ is
impossible to be 1 for any k N≤ .

Assume that for a given k and w , (),w w kσ < , is the
only element in kΓ . At the wth matching-selection round,

()wσ selects egress port ()wδ . Investigating the ()kσ th row

sum ()kRσ and the ()wδ th column sum ()wCδ in the η -server

service matrix, we have ()kRσ η= and () 1wCδ η≥ + , which
contradicts with the definition of η -server service matrix.

Hence, the worst case occurs when 2kΓ = , where an
ingress port is blocked every two matching-selection rounds. It
implies that after N rounds of selection-matching procedures,

/ 3N ingress ports are blocked and thus cannot find any egress
ports for matching. Consequently, the cardinality of a
matching, c , is

2
3
Nc ≥

With the condition

c F N η⋅ = ⋅

We have

1.5
2 / 3

NF
N

η η≤ = □

Corollary 1: Let ∆ denote switching overhead in units of

timeslots. For any admissible traffic, a speedup of 3
2 3− ∆

 is

sufficient for QBvN-cover to schedule switch configurations
that provide at least a η -server service.

Proof: Let max 1.5F η= . In order to schedule maxF partial
permutation matrices in η timeslots, the required speedup γ
of QBvN-cover can be calculated.

max

max

3
2 3

F
F

γ
η

= =
− ⋅ ∆ − ∆

 □

C. Complexity of QBvN
The complexity of QBvN depends on the implementation

of the matching and selection. In this paper, the complexity can
be reached in the condition that N is no more than 64 under
Intel’s 64-bit processor. Note that the condition is compliant
with the AAPN technical criteria.

The matching can be implemented as a label-matching
procedure. Each ingress port i, i=0, 1, …, N-1, keeps a label
with N bits, called Li, and each bit indicates an egress port. If
there exist edges from the ingress port i to egress port j on the
bipartite graph G, the jth bit of Li is set to 1; 0 otherwise. For
each bipartite graph matching GM, there is also a label with N
bits, called Lfree, and each bit indicates an egress port. If the
egress port j is free on the GM, the jth bit of Lfree is set to 1; 0
otherwise. An egress port on GM is said to be free if the egress
port is not yet part of the matching. The Lfree marks all free
egress ports ready for current matching on GM. The label-
matching procedure may thus obtain all augmenting edges
incident on port i by applying the following operation:

LM = Li AND Lfree

Here LM is also a label with N-bits and each bit indicates an
egress port. The edge <i, j> is an augmenting edge incident on
port i if the jth bit of LM is 1. The notation "AND" denotes a
bitwise "and" operation. Here we assume the operation AND
takes O(1) time, which is true if N is smaller than the effective
word length of a computer (in number of bits). Thus the time
complexity of matching is O(1).

The selection can be formulated as finding the index of the
least significant “1” bit (the lowest “1” bit) in LM. The index
denotes the egress port with the smallest number joining an
augmenting edge.

The selection procedure is divided into two steps. The first
step is to find the least significant “1” bit; the second step is to
find the index of that “1” bit. We use the operation

Lleast = LM AND (-LM)

to obtain an N bit label Lleast where only the position of the least
significant “1” bit is marked by “1”. Note that -LM is the 2’s
complement of LM. Then we perform the following two
operations

Lleast = Lleast -1

popcount

to find the index of the least significant “1” bit. The assembly
instruction popcount (IA-64) is used to count the number of “1”
bits in Lleast, which is exactly the same as the index of the least
significant “1” bit after the operation Lleast = Lleast -1. The time
complexity of the selection procedure is O(1) under the above
assumption about the word length of the computer.

The time complexity of QBvN scales as ()O Nη because it
needs to repeat the matching-selection procedure Nη times to
find η matchings. The maximum number of partial
permutation matrices generated by QBvN-cover is 1.5η . The
time complexity of QBvN-cover thus scales as ()O Nη as well.

Note that if the QBvN or QBvN-cover is running on a K-bit
processor where K N< , the time complexity will scale as

()NO N
K

η

.

IV. SIMULATIONS AND DISCUSSION
In this section, the delay performance of QBvN and QBvN-

cover is studied in a simulated AAPN environment. The traffic
is generated with a composite Markov Poisson Process model
[14] that simulates statistics of the following types of traffic:
continuous bit rate (e.g. voice), variable bit rate (e.g. video) and
variable bursty traffic (data). The destination of each slot is
chosen by a uniform random process. The capacity of each
VOQ is assumed to be infinite. The longest propagation delay
between edge nodes and AAPN core nodes is assumed to be
d . The AAPN core collects traffic information, i.e. the length
of each VOQ, and organizes it in a traffic matrix. A service
matrix is constructed in terms of the traffic matrix by running a
simple scaling and rate filling routine [10]. Given the service
matrix, the timeslot allocation scheme, e.g. QBvN or QBvN-
cover, can be applied to generate partial permutation matrices.
A schedule generator is used to complete the partial
permutation matrices by connecting residual free ingress and
egress ports. The generated timeslot schedules are then
signaled to the edge nodes.

 Two scenarios, Metropolitan Area Network (MAN) and
Wide Area Network (WAN), are studied in this paper. MAN is
defined as an AAPN network with 100km optical links
(d=0.5ms). WAN is defined as a national wide AAPN network
with 2000km optical links (d=10ms). The number of edge
nodes considered is 16 (small AAPN switch) and 64 (large
AAPN switch).

A. Delay Performance

For comparison, two algorithms, EXACT and GLJD, in the
literature are selected. The EXACT provides an exact BvN
decomposition from a service matrix with high computation
complexity. The GLJD provides the least switch configurations
with low computation complexity.

Figure 2 shows the comparison of delay performance
among these algorithms. For MAN (d=0.5ms), the delay
performance of QBvN-cover and that of EXACT are close. But
for WAN (d=10ms), QBvN-cover shows better performance
because the long propagation delay causes the traffic demand
information collected in the AAPN core to be out-of-date.
GLJD shows the worst delay performances although it shows a
competitive delay performance in WAN with load more than
0.9.

Figure 3 shows the delay performance of QBvN-cover with

different propagation delays (0.5ms and 10ms) as a function of
offered load for switches with 16 and 64 ports. As we might
expect, the performance degrades with the number of ports.
However, the performance degrades differently under low and
heavy load. For low offered load, i.e. load<0.5, the queuing
delay degrades only slightly due to the existence of plenty of
free timeslots for each source edge node. At high offered load,
the delay performance degrades more sharply especially in the
case of a WAN. The reason lies once again in the long
propagation delay. We noticed that the mean queuing delay of
slots is much less than the signaling time, i.e., the round-trip
propagation delay, when the load is not very heavy. This is
because the residual free bandwidth is allocated by QBvN-
cover schedulers, which improves delay performance of slots,
especially when the propagation delay is large, e.g., WAN [15].

B. Analysis of design tradeoffs
Naturally, it is not mandatory to input a service matrix to

QBvN-cover. It might be valuable, in terms of reduced
computation, to generate partial permutation matrices directly
from traffic matrix instead of a service matrix. However,
Figure 4 shows that a service matrix construction procedure
efficiently reduces mean queuing delay. The reason for the

reduction lies in the bursty characteristics of traffic arrivals,
that is, a huge amount of traffic demand may flood certain edge
nodes sometimes while nearly no traffic goes to others. In the
case where the service matrix construction process is not
adopted, nearly all bandwidth is allocated by QBvN-cover to
fulfill such huge traffic demands so that the small traffic
demands cannot be served promptly. Consequently, those small
traffic demands may encounter heavy delay and cause poor
delay performance.

V. CONCLUSION
In this paper, the problem of finding a simple and efficient

approach to approximate BvN decomposition for AAPN cores
is considered and the QBvN algorithm, whose time complexity
can reach ()O Nη for a frame size of η , is proposed as a good
solution. QBvN-cover, as another version of QBvN, is
proposed. For QBvN-cover, the bound on the number of
generated switch configurations is provided and hence the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Offered load

M
e

an
 q

u
e

ue
in

g
 d

e
la

y
(m

s)

No service matrix construction
Simple scaling and rate filling routine

d=10ms

d=0.5ms

Figure 4 Comparison of QBvN-cover's Delay Performance with/without
Service Matrix Construction (N=64)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Offered load

M
e

a
n

 q
u

e
u

in
g

 d
e

la
y

(m
s)

N=16, Link delay=0.5ms
N=16, Link delay=10ms
N=64, Link delay=0.5ms
N=64, Link delay=10ms

Figure 3 Mean Queuing Delay of QBvN-cover as a Function of Offered Load

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Offered load

M
ea

n
qu

eu
in

g
de

la
y

(m
s)

EXACT
QBvN
QBvN-cover
ILJD

d=10ms

d=0.5ms

Figure 2 Comparison of Delay Performance among Different Algorithms
(N=64, η =100)

necessary speedup for AAPN cores so that QBvN-cover can
provide guaranteed scheduling with configuration overhead.

Under stream-type, continuous bit rate, traffic, QBvN-cover
shows better delay performance than other algorithms in the
literature, especially in a WAN environment. Although it is not
mandatory for QBvN-cover to use a service matrix as its input,
the service matrix construction procedure is necessary for
QBvN-cover to deliver good delay performance.

ACKNOWLEDGMENT
Dr. Trevor J. Hall holds a Canada Research Chair in

Photonic Network Technology at the University of Ottawa and
is grateful to the Canada Research Chairs Program for their
support. The authors are also indebted to Dr. Sofia Paredes for
her insightful comments and careful reading of the manuscript.

REFERENCES
[1] G.v. Bochmann, M.J. Coates, T. Hall, L. Mason, R. Vickers and O.

Yang, “The Agile All-Photonic Network: An architectural outline”,
Proc. Queen's University Biennial Symposium on Communications,
2004, pp.217-218

[2] Y. Tamir and G. Frazier, “High performance multiqueue buffers for
VLSI communication switches”, In Proceedings of 15th International
Symposium on Computer Architecture (ISCA), May/June 1988, pp. 343-
-354

[3] N. McKeown, P. Varaiya and J. Warland, “Scheduling cells in an input-
queued switch”, IEEE Electron. Letter, December 1993, pp.2174-2175

[4] T. Anderson, S. Owicki, J. Saxe and C. Thacker, “High Speed Switch
Scheduling for Local Area Networks”, ACM Transactions on Computer
Systems 11(4), November 1993, pp. 319 – 352

[5] N. McKeown, "iSLIP: A scheduling algorithm for input-queued
switches", IEEE/ACM Transactions on Networking, 7(2), April 1999,
pp. 188-201

[6] H. J. Chao, “Satrun: a terabit packet switch using dual round-robin”,
IEEE Communication Magazine, vol. 38, no. 12, December 2000, pp.
78-79

[7] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm
for on-line bipartite matching”, Proceedings of the twenty-second annual
ACM symposium on Theory of computing, April 1990, pp. 352-358

[8] C.S. Chang, W.J. Chen and H.Y. Huang, “Birkhoff-von neumann input
buffered crossbar switches”, Proceedings of IEEE INFOCOM, 2000, pp.
1614-1623

[9] B. Towles and W. J. Dally, "Guaranteed scheduling for switches with
configuration overhead," IEEE/ACM Transactions on Networking, vol.
11, no. 5, October, 2003, pp. 835-847

[10] S.A. Paredes and T.J. Hall, “Flexible bandwidth provision and
scheduling in a packet switch with an optical core”. OSA Journal of
Optical Networking, 4(5), May 2005, pp. 260-270.

[11] R. Cole, K. Ost and S. Schirra, “Edge Coloring Bipartite Multigraphs in
O(E logD) Time”, Combinatorica, 21(1), 2001, pp. 5-12

[12] I. Keslassy, M. Kodialam, T.V. Lakshman and D. Stiliadis, "On
guaranteed smooth scheduling for input-queued switches", Proceedings
of IEEE INFOCOM, 2003, pp. 1384-1394

[13] G. Birkhoff, “Tres observaciones sobre el algebra lineal”, Univ. Nac.
Tucuman, Rev. Ser. A 5, 1946, pp. 147-151

[14] M. Schwartz, “Broadband Integrated Networks”, New Jersey: Prentice
Hall,1996, pp. 21-32

[15] C. Peng, P. He, G. v. Bochmann and T. J. Hall, “Delay Performance
Analyses for an Agile All-Photonic Star Network”, accepted by the 5th
IFIP-TC6 Networking, Coimbra, Portugal, May 2006

